Generation of Brønsted Acid Sites on Alumina-supported Tantalum(V) Oxide Calcined at 1223 K

Tomoyuki Kitano, Shota Okazaki, Tetsuya Shishido,* Kentaro Teramura, and Tsunehiro Tanaka* Department of Molecular Engineering, Graduate School of Engineering, Kyoto University,

1 Katsura, Nishikyo-ku, Kyoto 615-8510

(Received August 25, 2011; CL-110713; E-mail: shishido@moleng.kyoto-u.ac.jp)

An alumina-supported tantalum(V) oxide (Ta_2O_5/Al_2O_3) calcined at 1223 K promoted the Friedel–Crafts alkylation of anisole with benzyl alcohol, and exhibited Brønsted acidity despite the high-temperature calcination. Among the Ta_2O_5/Al_2O_3 catalysts tested, 33 wt % Ta_2O_5/Al_2O_3 calcined at 1223 K showed the highest activity.

Niobic acid (Nb₂O₅ \cdot *n*H₂O, hydrated niobium oxide) is a water-tolerant solid acid catalyst that exhibits strong Brønsted acidity and is effective for reactions in aqueous media such as esterification, olefin hydration, and alcohol dehydration.^{1,2} However, when heated at >773 K, dehydration of niobic acid leads to loss of its acidity.³ Hydrated tantalum oxide (Ta₂O₅. nH₂O) is another well-known solid acid catalyst.⁴ Hydrated tantalum oxide shows mainly Lewis acid properties in the absence of water, but Brønsted acid sites are generated by treatment with steam at 373 K. Compared to Nb₂O₅•nH₂O, $Ta_2O_5 \cdot nH_2O$ retains its strong acidity after calcination at higher temperatures. However, when heated at temperatures >1073 K, dehydration and crystallization occur and Ta₂O₅•nH₂O loses its acidic properties. Metal oxide solid acids such as aluminosilicate, zeolite, and binary oxides are usually prepared by calcination at or below 873 K, and pretreatment at >873 K reduces or eliminates the acid sites.^{5–7} If a solid acid could be prepared by calcination at high temperatures required for the formation of ceramics (>1173 K), it would be a useful acidcatalyst even under strict conditions because of its high stability. However, there are very few reports aside from a couple of exceptions, like SiO₂/Al₂O₃ prepared by CVD,⁸ highly siliceous zeolites, and layered mixed oxide.9

Recently, we found that a solid acid prepared with high loading of Nb₂O₅ on an Al₂O₃ support and calcined at 1173 K exhibited Brønsted acidity despite the high-temperature calcination. This strongly suggests that the alumina support stabilizes the Brønsted acid sites during calcination at high temperature,¹⁰ which suggests that Ta₂O₅/Al₂O₃ could also act as a stable Brønsted acid catalyst. Here, we prepared a series of Ta₂O₅/Al₂O₃ solid acids and investigated their unique acidic properties in a Brønsted acid-promoted Friedel–Crafts alkylation of anisole with benzyl alcohol.

A series of Ta_2O_5/Al_2O_3 solid acids were prepared by impregnation of γ -alumina (JRC-ALO-8, Catalysis Society of Japan, 148 m² g⁻¹) with an ethanol solution of tantalum ethoxide (Ta(OC₂H₅)₅), followed by calcination at various temperatures for 3 h in dry air. Aluminum tantalate, AlTaO₄, was synthesized from tantalum ethoxide and aluminum propoxide (Al(OC₃H₇)₃) according to an established procedure.¹¹ Hydrated tantalum oxide (Ta₂O₅•*n*H₂O) was prepared from tantalum ethoxide.⁴ Crystalline T-phase Ta₂O₅ was prepared from Ta₂O₅•*n*H₂O by calcination at 1223 K. Friedel–Crafts alkylation was carried out as a test reaction to investigate the acidic properties of Ta_2O_5/Al_2O_3 . The Friedel–Crafts alkylation between anisole and benzyl alcohol was examined in the liquid phase. The catalyst (0.15 g) was added to a mixture of benzyl alcohol (6.25 mmol) and anisole (92.5 mmol) in a 100 mL flask. The reaction was carried out at 433 K. Products were analyzed by FID-GC (Shimadzu GC-14B, Kyoto, Japan) and GC-MS (Shimadzu QP-5050).

A Rigaku (Tokyo, Japan) MultiFlex DR Powder X-ray diffractometer (XRD) was used to identify the compounds formed on the catalyst samples. The specific surface area was evaluated by the BET method using liquid nitrogen with a BEL Japan (Osaka, Japan) BELSORP28 28A. Infrared spectra of adsorbed lutidine (2,6-dimethylpyridine) were recorded with a Perkin-Elmer (Waltham, MA) Spectrum One Fourier transform infrared spectrometer, and used to elucidate the generation of Brønsted acid sites over Ta₂O₅/Al₂O₃. The sample (13 mg) was pressed into a self-supporting disk (ϕ 13 mm) and pretreated under 13.3 kPa of O₂ for 1 h at 773 K, and then evacuated for 1 h at 773 K. Then the sample was exposed to 0.533 kPa of lutidine vapor at 298 K for 10 min followed by evacuation at 423 K for 10 min.

Figure 1A shows the effect of the calcination temperature of 33 wt % Ta₂O₅/Al₂O₃ on the product yields in the Friedel–Crafts alkylation of anisole with benzyl alcohol. The main products were ortho- and para-benzylanisole isomers, which were presumably formed on the Brønsted acid sites, and the byproduct was dibenzyl ether produced mostly on the Lewis acid sites.¹²⁻¹⁵ The ratio of ortho- to para-benzylanisole was approximately 48:52 throughout the reaction. The yield of benzylanisole increased as the calcination temperature was increased to 1223 K. Calcination at higher temperatures (>1223 K) resulted in a reduced yield of benzylanisole. The yield of dibenzyl ether did not vary largely with the calcination temperature. These results strongly suggest that Brønsted acid sites are generated on Ta2O5/Al2O3 by calcination at high temperatures such as 1223 K. Figure 2 shows the XRD patterns of 33 wt % Ta₂O₅/Al₂O₃ calcined at various temperatures. Calcination at up to 1223 K did not cause crystallization of tantalum oxide (T-Ta₂O₅) or aluminum tantalate (AlTaO₄). In contrast, the XRD patterns of Ta₂O₅/Al₂O₃ calcined at 1273 K or above exhibited peaks for T-Ta₂O₅ and AlTaO₄. Ushikubo et al. reported that amorphous Ta₂O₅•nH₂O crystallized to T-Ta₂O₅ after calcination at 1073 K.⁴ Therefore, it appears that Al₂O₃ support stabilizes amorphous Ta₂O₅ and prevents it from crystallizing during calcination even at 1223 K.

Corresponding to the crystallization results, the specific surface area of Ta_2O_5/Al_2O_3 very gradually decreased from 150 to $100 \text{ m}^2 \text{ g}^{-1}$ with an increase in calcination temperature up to 1223 K, and drastically decreased to $50 \text{ m}^2 \text{ g}^{-1}$ with calcination at higher temperatures (1273–1423 K) (Figure 3). In this temperature region, the formation of AlTaO₄ proceeded and the yield of

Figure 1. The product yields in the Friedel–Crafts alkylation of anisole with benzyl alcohol. (A) Effect of the calcination temperature of 33 wt % Ta₂O₅/Al₂O₃, (B) effect of Ta₂O₅ loading of the Ta₂O₅/Al₂O₃ calcined at 1223 K, reaction temperature: 433 K, reaction time: 1 h. Symbols are for (\bullet) benzylanisole and (\bigcirc) dibenzyl ether.

Figure 2. XRD patterns of 33 wt % Ta₂O₅/Al₂O₃ calcined at (a) 773, (b) 973, (c) 1173, (d) 1223, (e) 1273, (f) 1323, (g) 1373, and (h) 1423 K. Peaks are for (\triangle) γ -Al₂O₃, (\blacktriangle) θ -Al₂O₃, (\bigcirc) T-Ta₂O₅, and (\square) AlTaO₄.

Figure 3. Reduction of the specific surface area of 33 wt % Ta₂O₅/Al₂O₃ with the calcination temperature.

Figure 4. XRD patterns of Ta_2O_5/Al_2O_3 solid acids with various Ta_2O_5 loadings and calcined at 1223 K. Ta_2O_5 mass fraction: (a) 10, (b) 20, (c) 30, (d) 33, (e) 35, (f) 40, and (g) 50 wt %. Peaks are for (\triangle) γ -Al₂O₃ and (\bigcirc) T-Ta₂O₅.

benzylanisole drastically decreased. Moreover, $AITaO_4$ was completely inert for the Friedel–Crafts alkylation. These results strongly suggest that the formation of inert $AITaO_4$ phase reduces the catalytic activity.

The results of Friedel–Crafts alkylation over Ta₂O₅/Al₂O₃ solid acids with various Ta₂O₅ loadings and calcined at 1223 K are shown in Figure 1B. The catalyst with a Ta₂O₅ mass fraction of 33% exhibited the highest activity. The XRD patterns of Ta₂O₅/Al₂O₃ (Figure 4) showed that T-Ta₂O₅ was not present in the catalysts with Ta₂O₅ mass fraction of less than 33%. With Ta₂O₅ mass fractions >35%, the intensity of the diffraction lines for T-Ta₂O₅ increased and the full width at half maximum of these diffraction lines decreased with increasing Ta₂O₅ loading. These results indicate that the amorphous Ta₂O₅ supported on γ -Al₂O₃ crystallized to T-Ta₂O₅ and the crystallite size increased. When the Ta₂O₅ mass fraction was >35%, the yield of benzylanisole was greatly reduced, suggesting that formation of the inert T-Ta₂O₅ phase reduced the catalytic activity. Indeed, the Friedel–Crafts alkylation did not proceed over T-Ta₂O₅.

To examine the generation of Brønsted acid sites on Ta_2O_5/Al_2O_3 calcined at 1223 K, the acid sites were characterized based on FT-IR spectra of lutidine adsorbed on the catalysts. Figure 5

Figure 5. IR spectra of lutidine adsorbed on (a) alumina, and on (b) $33 \text{ wt }\% \text{ Ta}_2O_5/Al_2O_3$ calcined at 1223 K.

Figure 6. Yield of alkylated products over Ta_2O_5/Al_2O_3 solid acids with various Ta_2O_5 loadings and calcined at 1223 K, plotted against the Brønsted acidity of the catalyst.

shows the IR spectra of lutidine adsorbed on 33 wt % Ta₂O₅/Al₂O₃ calcined at 1223 K and bare γ -Al₂O₃. The bands at 1580 and 1608 cm⁻¹ can be assigned to lutidine adsorbed on Lewis acid sites, and the bands at 1628 and 1647 cm⁻¹ can be assigned to lutidine adsorbed on Brønsted acid sites.^{16,17} The IR spectrum of lutidine adsorbed on 33 wt % Ta₂O₅/Al₂O₃ calcined at 1223 K showed intense bands at 1628 and 1647 cm⁻¹. In the spectrum of bare γ -Al₂O₃, the bands were observed at 1580 and 1608 cm⁻¹ for lutidine adsorbed on Lewis acid sites. These results clearly indicate that Brønsted acid sites are generated on Ta₂O₅/Al₂O₃ calcined at high temperature. When T-Ta₂O₅ and AlTaO₄ were exposed to lutidine, no band for adsorbed lutidine was observed in the IR spectra of these samples. This result indicates that both Brønsted and Lewis acid sites are absent on T-Ta₂O₅ and AlTaO₄.

Figure 6 shows the correlation between the yield of benzylanisole and the Brønsted acidity, which was evaluated from FT-IR spectra of adsorbed lutidine (see Supporting Information¹⁸), of Ta_2O_5/Al_2O_3 calcined at 1223 K with various Ta_2O_5 loading. The yield of benzylanisole correlated well with the Brønsted acidity, indicating that the Friedel–Crafts reaction

is promoted on the Brønsted acid sites. Interestingly, Brønsted acid sites were still detected for the Ta₂O₅/Al₂O₃ catalysts calcined at 1223 K. In contrast, pure Ta₂O₅ calcined at higher temperatures (>1073 K, T-Ta₂O₅) exhibits neither Brønsted nor Lewis acidity at all as mentioned above. Both calcination temperature and the amount of Ta₂O₅ loaded on the Al₂O₃ affected the Brønsted acidity. This suggests that structural changes around the tantalum have a major impact on the Brønsted acidic property. The detailed local structure of tantalum species of Ta₂O₅/Al₂O₃ is currently under investigation.

From these results, we conclude that a Ta_2O_5/Al_2O_3 solid acid with a high Ta_2O_5 mass fraction and calcined at 1223 K can exhibit Brønsted acidity. This is a new type of stable solid acid. Among the Ta_2O_5/Al_2O_3 catalysts tested, 33 wt % Ta_2O_5/Al_2O_3 calcined at 1223 K showed the highest activity.

This work was supported in part by a Grant-in-Aid for Scientic Reserch (B) (Grant No. 23360355) from the Ministry of Education, Culture, Sports, Science and Technology and by the Iwatani Naoji Foundation (Grant No. 09-011).

References and Notes

- 1 T. Iizuka, K. Ogasawara, K. Tanabe, *Bull. Chem. Soc. Jpn.* **1983**, 56, 2927.
- 2 T. Okuhara, *Chem. Rev.* **2002**, *102*, 3641.
- 3 T. Ohuchi, T. Miyatake, Y. Hitomi, T. Tanaka, *Catal. Today* 2007, *120*, 233.
- 4 a) T. Ushikubo, K. Wada, *Chem. Lett.* 1988, 1573. b) T. Ushikubo, K. Wada, *Appl. Catal.* 1990, 67, 25.
- 5 a) A. Corma, Chem. Rev. 1997, 97, 2373. b) A. Corma, Chem. Rev. 1995, 95, 559.
- 6 K. Arata, H. Matsuhashi, M. Hino, H. Nakamura, *Catal. Today* 2003, 81, 17.
- 7 W. Zhang, X. Han, X. Liu, X. Bao, *Microporous Mesoporous Mater.* 2001, 50, 13.
- 8 N. Katada, H. Ishiguro, K.-i. Muto, M. Niwa, *Chem. Vap. Deposition* 1995, 1, 54.
- 9 a) A. Takagaki, M. Sugisawa, D. Lu, J. N. Kondo, M. Hara, K. Domen, S. Hayashi, *J. Am. Chem. Soc.* 2003, *125*, 5479. b) A. Takagaki, C. Tagusagawa, S. Hayashi, M. Hara, K. Domen, *Energy Environ. Sci.* 2010, *3*, 82.
- 10 a) T. Shishido, T. Kitano, K. Teramura, T. Tanaka, *Catal. Lett.* 2009, *129*, 383. b) T. Shishido, T. Kitano, K. Teramura, T. Tanaka, *Top. Catal.* 2010, *53*, 672.
- 11 O. Yamaguchi, D. Tomihisa, T. Uegaki, K. Shimizu, J. Am. Ceram. Soc. 1987, 70, C-335.
- 12 T. Cseri, S. Békássy, F. Figueras, E. Cseke, L.-C. de Menorval, R. Dutartre, *Appl. Catal.*, A 1995, 132, 141.
- 13 a) K. Okumura, K. Yamashita, M. Hirano, M. Niwa, *Chem. Lett.* 2005, 34, 716. b) K. Okumura, K. Yamashita, M. Hirano, M. Niwa, *J. Catal.* 2005, 234, 300. c) K. Yamashita, M. Hirano, K. Okumura, M. Niwa, *Catal. Today* 2006, 118, 385.
- 14 a) M. H. C. de la Cruz, M. A. Abdel-Rehim, A. S. Rocha, J. F. C. da Silva, A. da Costa Faro, Jr., E. R. Lachter, *Catal. Commun.* 2007, *8*, 1650. b) M. H. C. de la Cruz, J. F. C. da Silva, E. R. Lachter, *Catal. Today* 2006, *118*, 379.
- 15 C. Tagusagawa, A. Takagaki, S. Hayashi, K. Domen, J. Am. Chem. Soc. 2008, 130, 7230.
- 16 C. Morterra, G. Cerrato, G. Meligrana, Langmuir 2001, 17, 7053.
- 17 a) T. Onfroy, G. Clet, M. Houalla, *Microporous Mesoporous Mater*. 2005, 82, 99. b) T. Onfroy, G. Clet, M. Houalla, *J. Phys. Chem. B* 2005, 109, 14588.
- 18 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index. html.